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A B S T R A C T   

The present paper introduces the new 1:500 000 scale map of young geological deformations in Hungary, 
including all important deformation structures (faults and folds) related to the neotectonic evolutionary phase 
(<6–8 Ma) of the Pannonian basin. 

The new map is based on the interpretation of nearly 2900 2D seismic profiles and 70 3D seismic volumes, as 
well as on the critical evaluation of the results of published neotectonic studies. An important novelty of the map 
is that not only the near-surface manifestations of the neotectonic faulting, but also their roots in the underlying 
pre-Pannonian substratum are displayed, allowing correlation between various reactivated fault segments of 
longer fault zones and aiding the better understanding of the regional structural context. 

The new map provides a significantly more accurate definition (actual position, extension and geometry) of 
the neotectonic structures and provide more details compared to previous regional studies. The prevailing (E) 
NE–(W)SW striking neotectonic fault pattern clearly reflects the control of identically oriented pre-Pannonian 
fault systems during the neotectonic deformations. Markedly different orientations in the neotectonic struc
tures indicate important differences in the overall orientation of the underlying fault systems. These observations 
demonstrate that neotectonic activity is predominantly due to the reactivation of pre-existing (predominantly 
synrift) structures all over the Pannonian basin, as also indicated by previous studies. 

Despite experiencing the largest Middle- to Late Miocene extension and the formation of the deepest depo
centers in the whole Pannonian basin, SE Hungary practically lacks any observable neotectonic activity, which is 
a striking, but still poorly understood feature. 

Detailed 3D seismic analysis of fault segment geometries indicates a consistent regional pattern: sinistral shear 
along (E)NE–(W)SW oriented, and dextral shear along (W)NW–(E)SE oriented fault zones, respectively. These 
observations — together with the E–W trending contractional/transpressional structures (folds, reverse faults, 
imbricates) occurring in western and southern Hungary — indicate a dominantly strike-slip stress regime with a 
laterally slightly rotating (from N–S to NNE–SSW) maximum horizontal stress axis (σ1) during the neotectonic 
phase. Lateral displacement along major root zones amounts to a maximum of 2–3 km during the neotectonic 
phase.   

1. Introduction 

The first GIS-based, regional neotectonic map of Hungary was pub
lished almost 15 years ago (Horváth et al., 2006), and can be considered 
as a pioneering scientific achievement in the region. It was mainly based 
on the compilation, re-evaluation and correlation of structural elements 

depicted on numerous published and unpublished maps (e.g., Horváth 
and Tari, 1988; Pogácsás et al., 1989; Csontos, 1995; Csontos and 
Nagymarosy, 1998; Wórum, 1999; Tóth and Horváth, 1997; Detzky 
Lőrinc et al., 2002; Síkhegyi, 2002, Bada et al., 2003a-b, Bada et al., 
2006; Wórum and Hámori, 2004; Fodor et al., 2005a-b; Windhoffer 
et al., 2005). However, due to the applied scale and the limited use of 
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seismic data this new initiative basically remained a large-scale, partly 
model-driven overview of the most important neotectonic structures in 
the Pannonian basin. 

Later on several modified versions of this map was published 
(Horváth et al., 2009; Bada et al., 2007, 2010), but the concept of the 
map itself did not change. Apart from these maps only one regional 
neotectonic overview was published (Fodor et al., 1999) based on 
modern, although restricted amount of data. 

Despite the numerous published, local-scale neotectonic studies (for 
details see Section 3.) a main deficiency of the former neotectonic 
research activity in Hungary was the lack of integrated databases used 
for the neotectonic evaluation (including extensive sets of seismic sur
veys) and their systematic tectonic interpretation according to a uniform 
methodology. The main goal of this work was to construct a completely 
new, detailed map of young geological deformations in Hungary 
considering (i) as large as possible set of 2D and 3D seismic data inter
preted in a systematic and consistent manner, and structurally corre
lated using trends emerging from interpreted seismic time horizon and 

geophysical maps; (ii) the results of all previous relevant neotectonic 
studies based both on surface and subsurface data. 

The resulting new map (Wórum et al., 2020; available at https://doi. 
org/10.17632/dnjt9cmj87.1 and www.geomega.hu) is significantly 
more detailed (1:500 000) than any of its countrywide precursors and 
opens up a whole range of utilization purposes ranging from (neo)tec
tonic and geodynamic syntheses, regional- or local scale modelling 
studies, through strategic infrastructure developments and construction 
works, to the assessment of seismotectonic risks. 

The main objective of this paper is to present and discuss the most 
important results of the new map, following the introduction of the 
geological background, the integrated geological-geophysical database, 
the key structural elements appearing on the map and the principles of 
the map construction. 

2. Geological setting 

The Pannonian basin surrounded by the Alpine, Carpathian and 

Fig. 1. Simplified overview of basement units and basin morphology in the Pannonian Basin and its surroundings with major tectonic units/elements and depth of 
the pre-Neogene basement (compiled after Horváth et al., 2018 and Schmid et al., 2008). Inset map shows the digital elevation model (DEM). Abbreviations: BF: 
Balaton fault, KF: Kapos fault, MHFZ: Mid-Hungarian Fault Zone, BVDV: Bogdan Voda - Dragos Voda fault; M, V: Mecsek and Villány Mts., Dt: Derecske trough, Szb: 
Szeged basin, Zt: Zagyva trough, Ht: Hernád trough; DTI: Danube-Tisza interfluve, Ny: Nyírség. 
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Dinaric mountain chains in Central Europe (Fig. 1) forms a classical 
back-arc basin of Miocene age (Royden, 1988) within the Alpine 
orogenic system. The basin floor in the Hungarian part of the basin is 
constituted by two Alpine orogenic megaunits (Alcapa and Tisza-Dacia; 
Balla, 1988; Csontos and Vörös, 2004; Schmid et al., 2008), showing 
markedly different paleogeographic affinity and geological evolution 
during the pre-Cenozoic times (e.g., Kovács et al., 2000; Haas and Péró, 
2004 and references therein). These megaunits were juxtaposed along 
the Mid-Hungarian Fault Zone (MHFZ; Fig. 1) preceding the Miocene 
basin formation (Balla, 1984, 1988; Kázmér and Kovács, 1985; Csontos 
et al., 1992; Tari, 1994; Csontos and Nagymarosy, 1998; Fodor et al., 
1998, 1999; Györfi et al., 1999; Tischler et al., 2007; Fodor, 2010). 

In the Hungarian part, basin formation started in the Early Miocene, 
approximately 21 Ma ago (Horváth, 1993; Horváth et al., 2015; Horváth 
et al., 2019). During the peak period of extension in the Early and Middle 
Miocene (the synrift phase of Royden et al., 1983) the main structural 
frame of the basin was established, characterized by normal and asso
ciated strike-slip faulting. Rifting took place diachronously across the 
basin culminating in the Early to Middle Miocene in the western and 
central and in the early Late Miocene in the eastern subbasins, 

respectively (Matenco and Radivojevic, 2012; ter Borgh et al., 2013; 
Balázs et al., 2016). The continental depositional environment of the 
early stage (ca. 21–17 Ma, i.e., Eggenburgian–Ottnangian) changed to 
marine conditions from the Karpatian on due to the transgression of 
Central Paratethys (for a detailed overview see Horváth et al., 2015, 
2018). This first period of basin evolution was also accompanied by a 
widespread silicic and subsequent calc-alkaline magmatic activity 
(Pécskay et al., 2006; Harangi and Lenkey, 2007; Lukács et al., 2018; 
Fig. 1). 

From the Late Miocene on the basin became isolated due to the uplift 
of the surrounding mountains as well as to the sea-level fluctuations of 
Paratethys (ter Borgh et al., 2013). Rifting continued in the eastern 
subbasins in the early Late Miocene (Balázs et al., 2016), whereas a 
basinwide regional thermal subsidence also occurred representing the so 
called post-rift phase of Horváth and Royden (1981). During the Late 
Miocene–Pliocene a long-lived, brackish-water lake developed (Magyar 
et al., 1999) that was progressively filled up by the deposits of the Lake 
Pannon megasequence (Horváth et al., 2015, 2018). The boundary be
tween the Lake Pannon megasequence and the underlying Central Par
atethys megasequence is marked — except for several Transdanubian 

Fig. 2. Simplified stratigraphic overview of the post-rift basin fill (complied after Sztanó et al., 2013a, b, Sztanó et al., 2016; Balázs et al., 2018).  
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deep basins with continuous sedimentation — by a regional unconfor
mity (Fig. 2) reflecting the late Middle Miocene (Sarmatian) uplift. This 
early inversion phase was coeval with the main collision in the East 
Carpathians (Horváth, 1995). 

The individual elements of the Lake Pannon megasequence (Fig. 2), 
playing a fundamental role in neotectonic investigations, were discussed 
in details by many previous lito-, bio-, and chronostratigraphic studies 
having paleogeographic implications (e.g., Bérczi, 1988; Juhász, 1991, 
1992; Magyar, 2010; Magyar et al., 1999, 2013, 2019; Sztanó et al., 
2013a, b, Sztanó et al., 2016). The litostratigraphic units displayed in 
Fig. 2 are by definition diachronous, as the basin was gradually filled 
from the northwest and northeast. This process was associated with the 
formation of a regional shelf-margin slope system prograding, in gen
eral, to the south-southeast in the Hungarian part of the basin between 
ca. 10 and 5 Ma. The total thickness of the post-rift sequence together 
with the Quaternary strata is strongly varying: it might reach up to 6–7 
km in the deepest subbasins, whereas 1–3 km thickness occurs in areas 
characterized by weak to moderate post-rift subsidence (Fig. 1). 

During the most recent tectonic evolutionary stage of the basin — 
referred to as neotectonic phase (Fig. 2) — inversion commenced (Tari, 
1994; Horváth, 1995; Bada et al., 1999; Gerner et al., 1999), as the 
prevailing tensional/transtensional stress regime changed to compres
sion (Horváth and Cloetingh, 1996; Fodor et al., 1999, 2005a; Csontos 
et al., 2002; Bada et al., 2007). The primary driving force of this change 
was, beside additional intraplate forces, the continuous northward 
indentation of the Adriatic microplate (“Adria-push”; Bada et al., 2007) 
and the consumption of subductible lithosphere along the East Carpa
thian arc (Horváth et al., 2015). Inversion took place diachronously 

across the basin: the first structures attributed to the neotectonic 
inversion were formed at ca. 8 Ma in SW Hungary (Zala subbasin; Uhrin 
et al., 2009), whereas initiation of neotectonic activity was definitely 
younger in the central (at ca. 4 Ma) and eastern part of the basin (Tari, 
1994; Horváth, 1995; Fodor et al., 2005a; b; Ruszkiczay-Rüdiger et al., 
2007; Balázs et al., 2016, 2018). 

On a regional scale, inversion was manifested in important differ
ential vertical movements (i.e., subsidence of deep depocenters in the 
central part and uplift on the basin flanks, respectively; Rónai, 1974, 
1987) interpreted as the results of large-scale folding of the lithosphere 
related to increased magnitude of intraplate stresses (Horváth and 
Cloetingh, 1996). Regional-scale folding with a wavelength being in the 
range of hundreds of kilometers was associated with brittle faulting in 
the shallow crust and intense erosion in the uplifting regions. Moreover, 
the basin was also interpreted as an example of irregular lithospheric 
folding (Cloetingh et al., 1999) with varying wavelengths being in the 
range from few to hundreds of kilometers. Results of analogue modelling 
focusing on the effect of crustal thickness variations supported this 
interpretation (Dombrádi et al., 2010). 

On a local scale these processes were coupled with significant near 
surface deformations manifested in faulting and folding of the Lake 
Pannon megasequence. These deformations of tectonic origin were 
coexisting with faults and folds initiated by sedimentary (mainly 
compaction) processes, which together form the subject of the present 
study. In general, prominent contractional structures were formed in the 
southwest near the Adriatic microplate boundary, whereas strike-slip 
deformation was dominant elsewhere (e.g., Fodor et al., 2005a, 
2005b; Bada et al., 2006, 2007; Horváth et al., 2006, 2009). These 

Fig. 3. Overview of the 2D and 3D seismic datasets integrated into the project.  
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deformations affected the uppermost post-rift sediments (i.e., Zagyva/ 
Újfalu Formations), and in some cases the overlying Quaternary strata as 
well (e.g., Pogácsás et al., 1989; Detzky Lőrinc, 1997; Tóth and Horváth, 
1997; Detzky Lőrinc et al., 2002; Magyari et al., 2005; Budai et al., 2008; 
Horváth et al., 2019). 

3. Geological and geophysical database 

The integrated database used for the project has two major constit
uents: an extensive seismic dataset (Fig. 3) and a large set of surface/ 
subsurface-geological and tectonic maps summarizing the results of 
various (neo)tectonic studies as well as regional geological-geophysical 
overviews. 

The seismic database of the project includes nearly 2900 2D seismic 
profiles and 70 3D seismic volumes from the seismic database of Geo
mega Ltd. in digital SEGY format. The 2D seismic dataset contain not 
only land, but also multichannel and ultrahigh resolution single channel 
water seismic data excellently imaging the shallow subsurface making 
them ideal for neotectonic investigations. 

Modern 3D seismic data volumes allowing for a particularly reliable 
identification and correlation of neotectonic features are mostly avail
able in the (south)eastern and southwestern part of the country (Fig. 3). 
Coherency volumes were calculated for all 3D seismic data volumes 
integrated into the project, and coherency time slices were subsequently 
used as the primary tool for identification and correlation of neotectonic 
faults (See also Section 5.1.). 

Altogether, the available seismic dataset integrated into the project 
ensures — except for the mountainous areas in Transdanubia and 
northern Hungary (Figs. 1, 3) — an overall good to excellent coverage in 
the country providing a stable basis for the identification and correlation 
of young deformations. In the mountainous areas the low seismic 
coverage was only one obstacle for the mapping of these deformations, 
since due to the general lack of young sedimentary cover the seismic 
imaging is rather poor. This necessitated the extensive use of published 
neotectonic studies in these areas based on surface geological, 
geomorphological or even remote sensing techniques. 

The other main constituent of the integrated database is represented 
by a series of georeferenced geological and geophysical maps aiding 
both the mapping of neotectonic deformations and the final map con
struction. These data include published regional neotectonic maps 
(Fodor et al., 1999; Horváth et al., 2006; Horváth et al., 2009), 
numerous local-scale tectonic maps of neotectonic relevance (Pogácsás 
et al., 1989; Cserny and Corrada, 1990; Fodor et al., 1994, 2005a-b; 
2013; Csontos, 1995; Detzky Lőrinc, 1997; Dudko, 1997; Tóth and 
Horváth, 1997; Horváth et al., 1997; Horváth et al., 2019; Csontos and 
Nagymarosy, 1998; Halouzka et al., 1998; Wórum, 1999; Sacchi et al., 
1999; Detzky Lőrinc et al., 2002; Korpás et al., 2002; Kováč et al., 2002; 
Lopes Cardozo et al., 2002; Síkhegyi, 2002, 2008; Bada et al., 2003a; b; 
Bada et al., 2006, 2010; Wórum and Hámori, 2004; Csontos et al., 2005; 
Magyari et al., 2005; Windhoffer et al., 2005; Juhász et al., 2007, 2013; 
Nádor et al., 2007; Ruszkiczay-Rüdiger et al., 2007, 2020; Budai et al., 
2008; Székely et al., 2009; Bada et al., 2010; Konrád and Sebe, 2010; 
Bodor, 2011; Dudás, 2011; Nádor and Sztanó, 2011; Várkonyi, 2012; 
Várkonyi et al., 2013; Kovács et al., 2015; Visnovitz et al., 2015; Petrik, 
2016; Loisl et al., 2018) as well as neotectonic reconstructions relying on 
remote sensing data (e.g., Czakó and Zelenka, 1981; Brezsnyánszky and 
Síkhegyi, 1987). 

These maps were complemented with a set of regional (Fülöp and 
Dank, 1987; Dank and Fülöp, 1990; Fodor et al., 1999; Fodor, 2010; 
Gyalog and Síkhegyi, 2005; Haas et al., 2010) and local-scale geological 
(Némedi Varga, 1977; Hetényi et al., 1982; Matura et al., 1998; Kiss 
et al., 2001; Csontos et al., 2002; Fodor et al., 2005c, 2013; Budai et al., 
2008; Palotai and Csontos, 2010; Tari and Horváth, 2010; Zámolyi et al., 
2010; Palotai et al., 2012; Palotai, 2013; Oláh et al., 2014; Soós, 2017; 
Petrik et al., 2018; Héja et al., 2018) and geophysical maps (Kiss, 2006; 
Kiss and Gulyás, 2006), which provided valuable information on (sub) 

surface geological relationships and structural trends largely aiding fault 
correlations and ultimately the final map construction. Subsurface 
geological and tectonic maps in publicly available hydrocarbon explo
ration reports were also taken into account during the model construc
tion in this project in order to have an as wide as possible scientific basis 
of the new regional map. 

The Bouguer anomaly map of Hungary (Kiss, 2006) was vectorized, 
and subsequently used not only as the background image of the new map 
(applying a different visualization), but also for the construction of a 
residual Bouguer anomaly map enabling the recognition of local scale 
trends/structures. 

4. Structural elements of the new map 

The newly compiled map (see https://doi.org/10.17632/dnjt9cmj 
87.1) displays all the relevant young deformation features (both tec
tonic and atectonic) that were mapped using the project database. The 
mapped structures include those faults and folds that were developed 
during the latest, neotectonic evolutionary phase of the Pannonian Basin 
(Fig. 2, ~ latest 6–8 Ma). From a practical, seismic interpretation point 
of view, those faults and folds were considered, which deform at least 
the Zagyva (and laterally equivalent) or younger formations (Fig. 2). In 
the oldest parts of the basin only those structures were mapped, which 
not only “affect”, but clearly deform the entire imaged part of the Zagyva 
(/Újfalu) formation ensuring that the age of the deformation is younger 
than the mentioned 6–8 Ma. A more precise temporal definition about 
the formation age of these structures cannot be given using the applied 
method because of the (i) intense erosion of younger Late Miocene–
Pliocene strata in the uplifted parts of the basin, and (ii) the poorly 
imaged nature of the seismic sections in the upper 200–500 ms. All 
things considered, most of the mapped deformations probably occurred 
in the last 5–6 million years, locally including deformations during the 
Quaternary. 

There are three groups of structural elements displayed on the new 
map:  

• Fault lines displaying the near surface manifestations (i.e. mapped 
fault traces) of faulting affecting the Late Miocene–Pliocene or 
younger sediments (both tectonic and atectonic)  

• Neotectonic folds affecting the Late Miocene–Pliocene or younger 
sediments excluding folding related exclusively to sedimentary 
processes such as differential compaction (e.g. drape-over anticlines)  

• Pre-Pannonian faults with or without near surface neotectonic 
manifestation that had any influence on the sedimentation and 
subsequent (i. e. neotectonic) deformation of the entire post-rift 
sequence. These include important syn- and pre-rift faults, 
comprising also blind faults that cannot belong to the group of 
neotectonic faults defined above, because the young reactivation 
were not strong enough to cause visible fault offsets in the Zagyva 
(/Újfalu) Formation. These faults are essential — regardless of their 
tectonic activity during the neotectonic phase — in the under
standing of the depicted near surface deformations. 

Main characteristics, their schematic genetic evolution and impor
tant differences between the mapped structures are summarized in Fig. 4 
and below. 

4.1. Faults 

According to origin, the brittle deformations (i.e. faulting) identified 
within the Late Miocene–Pliocene or younger sediments were classified 
into three main categories (Fig. 4):  

• tectonic faults related to the reactivation of pre-existing faults (i.e. 
neotectonic faults by definition) 
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Fig. 4. Overview of the mapped structures and their schematic genetic evolution.  
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• atectonic faults whose formation is not (or only indirectly) associated 
with pre-existing fracture systems (e.g. related to atectonic sedi
mentary processes such as compaction and slumping).  

• Several fault zones were mapped, where the tectonic or atectonic 
origin could not be determined unambiguously, or there exist 
different views in the literature on their interpretation. These faults 
were classified as “faults with uncertain/debated origin”. They 
typically occur above basement highs and disappear basinwards 
along strike (signs of atectonic origin), but display characteristic 
flower structure in seismic profiles (sign of tectonic origin). 

4.1.1. Tectonic faults related to the reactivation of pre-existing faults 
These faults inherit their characteristics from the “parent” fault 

systems in the basement and can be considered as “classical” neotectonic 
faults. In these cases the “parent” fault (i.e., the primary displacement 
zone, PDZ) can be often directly identified on the seismic data, and/or 
the characteristics of the fault zone developed in the young sedimentary 
pile are the same as those of the well-documented tectonic fault reac
tivations (e.g. flower structures, en-echelon fault planes connecting to a 
single root, etc.; Fig. 4). 

4.1.2. Atectonic faults related to compaction or slumping 
Faults related to compaction or slumping are considered as atectonic 

features (Fig. 4) in the Late Miocene–Pliocene sedimentary pile. 
Slumping frequently occurred in the unconsolidated post-rift sedimen
tary pile of the Pannonian Basin, especially in areas characterized by 
uneven basement morphology and large thickness variations. Slump- 
related faults are typically encapsulated into the young sedimentary 
sequence: they generally start in the upper portion of the post-rift 
sequence affecting the Zagyva, Újfalu and Algyő formations, and 
terminate (or detach) before reaching the base-Pannonian unconformity 
(Fig. 5). Although such faults do not have pre-Pannonian roots, they are 
many times associated with (triggered by?) nearby “real” neotectonic 
faults (see faults (in violet) at the Biharkeresztes-Komádi high in the 
eastern Great Hungarian Plain, see main map). 

Compaction faults are gravity-driven features formed due to the dif
ferential compaction of young sediments with laterally strongly varying 
thickness. Compaction faults develop continuously during sedimenta
tion with increasing overburden (Fig. 4) and has similar characteristics 
as classical syn-sedimentary normal faults. Compaction faults, consid
ered previously as “classical” neotectonic faults (e.g., Horváth et al., 
2006, 2009; Nádor et al., 2007), have been recently described from the 
eastern part of the Great Hungarian Plain (Balázs et al., 2016, 2018). 
Distinction between pure compaction (atectonic) and post-depositional 
tectonic faults in the Pannonian Basin is quite challenging occasion
ally as discussed later (see Section 6.4.). The faults mapped at the 
southwestern flank of the Algyő high are considered as the most typical 
examples of compaction faults forming standalone, relatively short 
features developed above the steep southwestern flank of the high (see 
also Balázs et al., 2016). 

4.2. Neotectonic folds 

The axis of folds within the post-rift sequence displayed on the new 
map represent synclines and anticlines formed by tectonic processes. 
Considering a generally flat sedimentary surface at all times during the 
sedimentation, anticlines and synclines developed above the uneven 
basement topography by the process of differential compaction were 
identified by their upward decreasing (and diminishing) fold amplitudes 
and were excluded from the mapping (see Fig. 4). This feature is in 
contrast with that of (post-sedimentary) tectonic folds, where the fold 
amplitude is nearly constant upward within the sequence (i.e. formation 
occurred after the deposition of the post-rift sequence, Fig. 6). 

Three groups of neotectonic folds were distinguished considering 
their origin and geometrical properties (Fig. 4):  

• Compression related folds  
• Differential vertical motion- and fault-related folds  
• Monoclinal folds 

4.2.1. Compression-related folds 
Compression-related folds are those large-scale “classical” folds of 

structural geology, which were formed by far-field compressional lith
ospheric stresses. As a result, the orientation of these (sets of) folds are 
parallel to each other and perpendicular to the maximum horizontal 
stress direction. Such folds occur in western and southwestern Hungary 
(see Sections 6.2. and 6.3.). 

4.2.2. Differential vertical motion- and fault-related folds 
These folds do not reflect directly the effect of the regional, far-field 

tectonic stresses, but rather their formation was constrained by nearby 
neotectonic faulting (i.e. rollover anticlines) or the orientation of the 
underlying tectonic fabric, such as basement blocks and pre-existing 
faults. Two types of folds were distinguished within this group. 

Differential vertical motion-related folds are associated with large scale 
regional flexures or connected to the differential vertical movements of 
crustal segments, and generally show a close correlation with basement 
topography (Fig. 4). This relationship can be quite different in case of 
some compression-related folds as illustrated by the Lovászi anticline, 

Fig. 5. Example of slump-related faulting above the Komádi basement high 
(eastern Great Hungarian Plain). Note that all faults terminate within the 
prograding shelf slope (Algyő F.). For location see Fig. 17b. 
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which was formed above an inverted graben structure in the Zala basin. 
Forced folds developed above the footwall of major reactivated normal 
faults characterized by abrupt upward transition from faulting to folding 
represent typical examples. 

It should also be noted that the characteristics of differential vertical 
motion-related folds of tectonic origin and significantly eroded 
compaction-related drape-over folds are very similar, since erosion 
removes the upper part of the anticline or syncline, which could be best 
used to identify the upward decreasing amplitude used for the differ
entiation. Similarly, low-amplitude tectonic-related folds and compac
tion folds are rather difficult to differentiate without detailed tectono- 
sedimentological investigations. In the present study folds without any 
significant upward decrease in the amplitude of folding were classified 
as differential vertical motion-related structures. 

Fault-related folds are represented by drag folds, roll-over anticlines, 
en-echelon folds, and folds related to flower structures (Fig. 4). The fault 
(s) constraining their formation and geometrical properties were always 
identifiable. Such folds are widespread in the whole country, and they 
are typically oriented parallel to sub-parallel, or with en-echelon ge
ometry to faults, along which the major deformation occurred. Both the 
wavelength and amplitude of such folding is generally (significantly) 
smaller than those of compression- or differential vertical motion- 
related folds, although they might form remarkable local structures (e. 
g., Fodor et al., 2005a-b; Ruszkiczay-Rüdiger et al., 2007). 

4.2.3. Monoclinal folds 
Monoclinal folds usually develop above reactivating reverse faults, 

however, as numerical and seismic examples show (Hardy, 2011; Nollet 
et al., 2012) they can also be formed by subtle, normal sense reactivation 
of steep normal faults. The neotectonic displacement above the con
trolling faults were small (Figs. 4, 7), therefore the faults did not cut up 
the post-rift sequence high enough to be classified as “classical” 

neotectonic faults defined earlier. This group of folds comprising only a 
few typical structures in SW Transdanubia (Fig. 7), which were identi
fied based on their characteristic geometric appearance on the seismic 
profiles. 

4.3. Pre-Pannonian root zones 

An essential novelty of the new map is that not only the near surface 
manifestations of neotectonic faults but also their roots in the underlying 
pre-Pannonian substratum were mapped and displayed. The roots 
display the localities of the faults formed mostly during the preceding 
Early–Middle Miocene basin evolution (Fodor et al., 2005a, 2005b; Bada 
et al., 2007), which either were (partly) reactivated during the neo
tectonic phase or had any (even atectonic) role in the deformation of the 
youngest sedimentary cover. In other words, not all mapped pre- 
Pannonian faults zones were reactivated tectonically during the neo
tectonic phase producing a near surface deformation, still, their com
plete representation on the new map was essential in order to provide a 
coherent, regional structural background. 

During interpretation of the roots hosted in the often poorly imaged 
Miocene or pre-Cenozoic basement literature data and Bouguer anomaly 
maps were also essential sources of information beside seismic data. The 
primary formation age of the mapped pre-Pannonian faults is varying, 
however most of them are connected to the Early/Middle Miocene tec
tonics of the basin. It also needs to be emphasized that the location of the 
root zones could not be referenced to a common stratigraphic horizon (e. 
g., base Pannonian) because the roots where the individual fault planes 
of a complex fault zone connect into a common “line” are located at 
different depth and within different stratigraphic units even along the 
same fault zone (Paleozoic–Mesozoic basement or within the overlying 
Paleogene–Middle Miocene basin fill). 

5. Mapping principles 

In the followings the principles and the most important aspects of the 
structural interpretation and subsequent map construction are 
summarized. 

5.1. Structural interpretation 

The primary source of information about the mapped faults and folds 
displayed on the map were the seismic datasets. Mapping of these 
structures using a countrywide uniform reference horizon was 
hampered by (i) the varying quality of the available seismic datasets (i. 
e., no or poor quality imaging in the uppermost, 0–0.4 s TWT range), and 
(ii) by the changing basement topography. The mapped fault traces 
typically refer to ~400-600 ms TWT in basin areas, and to 200-300 ms 
near the basin margins, respectively, which represent roughly the 
highest mapable occurrence of faults in the given areas. Considering the 
varying reference depth of the mapping and the dip of the fault planes, 
several hundred meters general fault trace uncertainty can be consid
ered when projected to the surface. Fold axis positions were determined 
using the shallowest, still well-imaged and laterally traceable post-rift 
reflection-package. 

Modern 3D seismic data volumes served as starting points for the 
regional mapping. Coherency volumes were calculated for all 3D seismic 
data volumes, and coherency time slices were subsequently used as the 
primary tool for identification and correlation of faults (see also Fig. 19). 
The primary fault segment interpretation was subsequently cross- 
checked in the seismic profiles in order to verify the actual position 
and extension of the identified fault segments and to filter out artificial 
linear features. The recognized dominant structural pattern and style 
were considered and consequently applied during the interpretation of 
adjacent 2D datasets resulting in a coherent structural interpretation 
covering larger areas. For the correlation of structural elements between 
2D seismic lines, trends seen on geophysical maps as well as on regional 

Fig. 6. Example of a tectonic fold developed above the Igal high. Note the 
upward nearly constant amplitude of folding of the post-rift strata. Orange and 
yellow lines indicate Pannonian marker horizons. For location see Fig. 17a. 
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geological maps were fully taken into account. Published neotectonic 
maps were also considered, revised if needed, and integrated during 
interpretation, especially in areas with poor seismic coverage. 

During mapping two quality classes were defined both for the faults 
and for the root zones:  

➢ Constrained (i.e., proven) faults are sufficiently defined by available 
subsurface and surface data. Faults of this qualification, regardless of 
their origin, are clearly identifiable in the seismic record and deform 
the highermost post-rift strata, or they have been well documented 
by surface geological observations and/or well data.  

➢ Poorly constrained (/suspected) classification was generally applied 
when the fault identification itself and/or its correlation was 
hampered by poor seismic quality and/or insufficient coverage. This 
class was also used for faults with ambiguous timing of faulting 
occurring mostly in uplifted areas covered by older (>6–8 Ma), 
eroded basin margin strata (i.e., mountain ranges and their sur
roundings). The neotectonic activity of several important fault zones 
was suspected based only on scarce surface geological data published 
in the literature (Darnó zone in northeastern Hungary for example; 
see Fodor et al., 2005c). If neotectonic activity could not be not 
confirmed by our data at other localities along the fault, the “sus
pected” category was applied considering the entire fault. 

Identification and classification of neotectonic faults were also aided 
by the map of historical and recent (from 1995 on) earthquakes (Tóth 
et al., 2020). These data were especially useful in mountainous areas 
characterized by a reduced or completely missing post-rift cover or poor 
seismic imaging. 

5.2. Map construction 

During final map construction the completed primary structural in
terpretations carried out on the integrated 2D and 3D seismic datasets 
has been generalized to the applied 1:500 000 map scale. During this 
process, only short, irrelevant fault segments were removed, the overall 
structural pattern was preserved and not simplified into single tectonic 
lines. 

Mountain ranges and their close surroundings are often character
ized by the complete lack of Late Miocene–Pliocene strata, as well as 
very poor or no seismic coverage. In these areas neotectonic structures 
shown on the map essentially derive from published data (for details see 
Section 3). This also holds true for the Lake Balaton where published 
fault and structural maps were found to form a coherent and adequate 
neotectonic model in this area, making reinterpretation unnecessary. 
The published models (often using different methods and datasets) were 
always cross-checked with each other and with available (often sparse) 
seismic data, and critical re-evaluation was performed, if needed. 

Fig. 7. Example of a monoclinal fold (right) related to a reactivated blind reverse fault. The asymmetric fold joins to a major syncline of compressional origin (left) 
towards the North (Zala basin, western Hungary). For location see Fig. 13. 
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Utilization of neotectonic results lacking any surface or subsurface 
geological/geophysical verification (e.g., models relying exclusively on 
remote sensing data; Czakó and Zelenka, 1981; Brezsnyánszky and 
Síkhegyi, 1987) was generally avoided during map construction. 

6. Results and Discussion 

Considering the important differences in the prevailing orientation 
and/or style of identified neotectonic deformations several major neo
tectonic domains — Danube-, Zala- and Dráva basins, Central Hungary, 
Southeast Hungary, Zagyva trough (Fig. 8) — could be distinguished in 
the country, even if their boundaries are somewhat arbitrary. The 
relationship between the defined domains and major tectonic units of 
the pre-Cenozoic basement (Fig. 8) provides a regional structural 
context for the following sections. 

6.1. Danube basin 

The Danube basin is located in the northwestern part of the country 
(Figs. 1, 8) having sufficient 2D and a few 3D seismic coverage (Fig. 3). 
In general moderate neotectonic activity is observed in this domain 
manifested mostly in the appearance of (N)NE–(S)SW and (W)NW–(E) 
SE striking faults and similarly oriented folds. Using the methodology 
shown on Fig. 4. the identified folds were all classified as differential 
vertical motion-, or fault-related (Fig. 9). This neotectonic deformation 
pattern shows a close relationship with the overall (N)NE–(S)SW 
structural trends of the pre-Tertiary basement consisting of various 
Austroalpine nappes formed during the Cretaceous (Eoalpine) tecto
genesis and overprinted by Miocene extension (Tari, 1994, 1996; Tari 
and Horváth, 2010). 

The main (N)NE–(S)SW structural trend of the basement formed 
during multiple pre- and synrift deformations is cut by numerous (W) 
NW–(E)SE striking faults of Neogene age (Haas et al., 2010). Neo
tectonic structures of this orientation occur mostly in the southeastern 
part of the domain, and belong to the Transdanubian Range unit rep
resenting the highest tectonic element of the Eoalpine nappe stack. This 
set of neotectonic faults is practically missing in the western part of the 
domain underlain by deeper Austroalpine and the structurally lowest 
Penninic units (Haas et al., 2010) below the main Miocene extensional 
detachment fault (i.e., the Rába fault: Tari, 1994, 1996; see also Figs. 8, 
9). This indicates reactivations of deeper faults and a strong control of 
basement tectonics on the neotectonic orientations. 

There are three subjects, where our work brought new insights and 
progress into the neotectonic understanding of the region (see also 
Fig. 9): 

(i) correlation of a wide, NE–SW striking neotectonic fault zone in 
the southeastern flank of the Danube basin (between the towns of 
Komárom and Pápa), (ii) identification of a set of NW–SE striking neo
tectonic faults in the southeastern part of the domain, (iii) identification 
of differential vertical motion-related folds occurring mostly in the 
western and southern part of the domain. In addition, several other, less 
prominent structures were correlated in the western part of the domain 
based on seismic interpretation and integration of published surface 
geological and geomorphological data (Székely et al., 2009; Zámolyi 
et al., 2010; Kovács et al., 2015), which show remarkable correlation 
with known Miocene extensional faults (Fertő-, Ikva-, Rohonc faults; see 
Fig. 9 and Tari and Horváth, 2010). 

The wide fault zone between the towns of Komárom and Pápa 
comprises several anastomosing, NNE–SSW and NE–SW oriented fault 
branches forming an acute angle with each other. A shorter fault branch 
between Pápa and Celldömölk with similar overall orientation forms 
probably its southwestern continuation. The arrangement of the indi
vidual NNE–SSW striking faults/fault branches and the mapped root 
zones largely resembles that of synthetic Riedel shears suggesting 
sinistral shearing along the fault zone. Although poorly constrained we 
believe that this fault zone continues up to the town of Komárom 

towards the northeast. This correlation is also supported by historical (i. 
e., the Komárom earthquake in 1763 with an estimated magnitude of 
6.2) and recent seismicity (Tóth et al., 2020; Fig. 9). 

The discussed fault zone transects the western flank of the Trans
danubian Range unit comprising here non-metamorphic Permo-Meso
zoic and underlying Lower Paleozoic low-grade metamorphic rocks (c.f., 
Haas et al., 2010). Integrated analysis of seismic sections and available 
well data suggests that neotectonic activity is related to the reactivation 
of a westnorthwest-dipping Miocene synrift normal fault cutting and 
displacing also an Eoalpine (Cretaceous) thrust in the pre-Tertiary 
basement (Fig. 10). 

Further to the southwest neotectonic faulting was also interpreted to 
be related to the reactivation of a synrift normal fault that joins directly 
to a low-angle Cretaceous thrust surface (Tari and Horváth, 2010), 
postulating an intimate structural relationship between extensional 
synrift and contractional pre-rift structures. 

A novel outcome of the new mapping is the correlation of several 
NW–SE striking neotectonic faults and fault-related folds in the south
eastern part of the domain above the buried Mesozoic formations of the 
Transdanubian Range unit. Similar neotectonic faults previously were 
only indicated at the margins of the Keszthely Mts. and along the 
Telegdi-Roth fault (e.g Horváth et al., 2006; Horváth et al., 2009; Fig. 9). 
Regarding their origin, large part of these reactivating NW–SE striking 
faults was considered to be related either to Cretaceous compression (e. 
g., Tari and Horváth, 2010), or preceding pre-orogenic (Late Triassic to 
Jurassic) tension (Héja et al., 2018), that were in part reactivated as 
normal or dextral faults during Miocene basin evolution. Neotectonic 
activity probably also occurred along these faults in the uplifted part of 
the Transdanubian Range unit, however, this cannot be verified due to 
the limited presence/thickness of young sediments and to the lack of 
appropriate seismic coverage. 

Widespread occurence of tectonic (differential vertical motion- 
related) folding in this domain were not shown previously (c.f., 
Fig. 9). These folds generally follow the main (N)NE–(S)SW structural 
trend of the domain and show a close correlation with basement 
morphology resembling the characteristics of drape-over anticlines of 
compaction origin at a first sight. Detailed analysis reveals however, that 
they are characterized by a practically constant amplitude of folding 
vertically within the entire imaged post-rift sequence being incompat
ible with a purely compactional origin (c.f., Figs. 4, 11). The striking 
spatial correlation between fold locations of this study and the very 
gentle surface morphological trends observed in the youngest fluvial 
sediments of the Rába river (Fig. 12) suggest that folding affects even the 
youngest sediments of the present day surface. This is also an indication 
against their compaction origin. Taking into account the young uplift of 
the neighboring mountain ranges (e.g., Tari, 1994; Horváth, 1995; 
Sacchi et al., 1999) we consider these folds to be related to the tecton
ically driven differential vertical movements of adjacent basement 
segments. 

6.2. Zala basin 

The Zala basin (Figs. 1, 8) represents the classic area of Hungarian 
structural geology, where E–W trending, compression-related folds were 
described from the early twentieth century on (Pávai Vajna, 1925; Dank, 
1962; Horváth and Rumpler, 1984). These folds clearly dominate the 
overall neotectonic deformation style of the domain (c.f., also Fodor 
et al., 2005a-b; Bada et al., 2006, 2007, 2010; Fig. 13). The E–W and 
ENE–WSW oriented structural trends generally characterize the domain 
despite the fact, that the area comprises several large tectonic units 
separated by first order tectonic fault zones (i.e., Balaton and Kapos fault 
zones; Figs. 8, 13). 

Compression-related neotectonic folding was essentially coupled 
with north-vergent blind reverse faulting along pre-existing synrift 
normal faults in the Zala basin (Horváth and Rumpler, 1984; Horváth, 
1995; Fodor et al., 2005a-b, Fodor et al., 2013; Bada et al., 2006). The 
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Fig. 8. Definition of neotectonic domains (yellow lines) based on the observed deformation pattern (for the legend of the mapped structures see Fig. 9). Rose charts (upper left) show the orientation distributions of 
various neotectonic structures within the domains. Background image shows the major tectonic units of the pre-Cenozoic basement (after Haas et al., 2010). 
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Fig. 9. Detailed view of the mapped structures in the Danube basin compared to earlier regional studies (Horváth et al., 2006; Horváth et al., 2009). Seismicity is shown after Tóth et al. (2020)  
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folding therefore was directly related to the regional neotectonic stress 
field characterized by a ca. N–S oriented horizontal maximum stress axis 
(σ1). The most prominent example is the long-known, E–W trending 
Budafa anticline (Fig. 14), but several smaller folds of this type (e.g., the 
Belezna and Semjénháza anticlines and an associated syncline between 
them) were also correlated. These smaller folds were not or often inac
curately shown in former neotectonic syntheses (e.g., Fodor et al., 
2005a-b, Fodor et al., 2013; Horváth et al., 2006, 2009; Bada et al., 
2007, 2010; see Fig. 13). The location of the blind reverse faults coupled 
with prominent contractional anticlines (Fodor et al., 2013) are in good 
agreement with the identified monoclinal structures developed above 
these faults. 

Beside its fold-dominated nature another striking feature of this 
domain is the subordinate role of neotectonic faults. They are typically 
oriented (sub)parallel to fold hinges and the underlying pre-Pannonian 
faults (see main map, https://doi.org/10.17632/dnjt9cmj87.1), and 
often represent the continuation of blind reverse faults to shallow 
stratigraphic levels. Their symmetrical arrangement on both sides of the 
Budafa anticline (Fig. 13) indicates the formation (or contemporaneous 
reactivation) of an antithetic, north-dipping fault producing a pop-up 

like structure during inversion in the middle sector of the anticline. In 
other cases faults either form flower structures (Hahót anticline; c.f., 
also Bada et al., 2006: Fig. 4) or are organized into a set of steep, (sub) 
parallel faults (Pátró-Inke anticline) in seismic sections. These obser
vations altogether indicate a compressional stress regime being 
perpendicular to the pre-existing structural fabric during the neotectonic 
deformation phase in this area. 

It is important to emphasize, that practically no near surface mani
festation of neotectonic faulting occurs along the western segments of 
the Balaton and Kapos faults being in contrast with their eastern con
tinuations characterized by peculiar neotectonic flower structures in the 
shallow post-rift strata (see also Section 6.4.). This feature indicates the 
lack of detectable strike-slip reactivation of these faults within the 
domain (questioned also by e.g., Bada et al., 2010) being in contrast with 
former regional neotectonic models (c.f., Fig. 13). However, based on 
recent and historical seismicity (Tóth et al., 2020) the western segments 
of these major fault zones can be considered as seismoactive (Fig. 13). 

Fig. 10. WNW–ESE directed seismic profile indicating neotectonic faulting coupled with the reactivation of pre-existing, westnorthwest-dipping synrift fault within 
the pre-Tertiary basement of the Transdanubian Range unit. For location see Fig. 9. 
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6.3. Dráva basin 

The Dráva basin is located in the southwestern part of the country 
extending in a NW–SE direction parallel to the river Dráva (Figs. 1, 15). 
Good seismic coverage with numerous modern 3D seismic volumes is 
available (Fig. 3) except for the area of the Mecsek and Villány Mts. 

The Dráva basin represents a unique domain in the sense that the 
prominent (W)NW–(E)SE neotectonic structural trend is not character
istic elsewhere in the country. This structural trend has been long 
recognized in the basement structure (Csalagovits et al., 1967; Fülöp and 
Dank, 1987; Haas et al., 2010). Altogether a moderate neotectonic ac
tivity occurs in this domain manifested in the formation of pronounced, 
NW–SE striking right lateral shear zones as well as compression-related 
folds. The new mapping has complemented the existing tectonic 

knowledge of the area and provided a detailed model of the Szulok- 
Sellye-Cún dextral strike-slip fault zone. The map also proposes an 
alternative structural model compared to other (neo)tectonic maps 
regarding the boundary of the Dráva and Mecsek-Villány tectonic units 
(see main map, https://doi.org/10.17632/dnjt9cmj87.1;Fig. 15). 

The dominant neotectonic feature of the domain is a nearly 60 km 
long, WNW–ESE striking fault zone running between the localities of 
Szulok and Cún. The fault zone is built up by a large number of indi
vidual fault segments up to a length of ca. 6 km oriented between 
NW–SE and N–S. Both their map view arrangement (i.e., typical en- 
echelon geometry) and their seismic image (i.e., characteristic flower 
structure) clearly suggest a strike-slip fault zone of dextral shear. This 
fault zone provides an excellent example for the neotectonic reactivation 
of ancient basement structures (Fig. 16): it was partly developed along 

Fig. 11. Fold characteristics from SW Danube basin (left) compared to the drape-over anticline above the Algyő high (SE Great Hungarian Plain; right). Note the 
strikingly different vertical pattern of fold amplitudes (constant vs. upward diminishing) supporting the presence of tectonic folding in the Danube Basin. Orange and 
yellow lines indicate arbitrary, uncorrelated Pannonian marker horizons. For location see Figs. 9 and 17a. 
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the southwestern border fault of a Carboniferous (see Haas et al., 2010) 
molasse graben, but neotectonic fault reactivation also occurs at the 
northern graben margin to a limited extent (Fig. 15). 

The graben gradually becomes narrower towards the southeast and 
finally disappears (near Sellye), however, a southwestward facing 
basement fault with associated neotectonic reactivation can be traced 
further in the seismic dataset up to the locality Cún. Recent seismicity 
documented along the entire length of the fault zone, and especially near 
the locality Sellye (Tóth et al., 2020; Fig. 15) is in good accordance with 
the observed neotectonic activity. 

The Görgeteg-Babócsa anticline is probably the best-known 

neotectonic structure of the domain, which (together with the associ
ated, parallel syncline to the north) was mapped, in great details (c.f., 
Fig. 15). A prominent, mostly northeast-dipping neotectonic fault is 
situated south of the anticline axis, whereas a shorter parallel fault 
segment north of the anticline axis represents a minor southwest- 
dipping antithetic fault. The formation of this anticline was generally 
connected to the reverse reactivation of a former, southwest-dipping 
fault appearing at the northwestern part of the anticline by compres
sional forces (Saftić et al., 2003; Wórum and Hámori, 2004; Horváth 
et al., 2015) using the structural analogy of the Zala basin (see Section 
6.2.). 

Fig. 12. Spatial correlation between fold locations of this study and surface morphological elements revealed by independent analysis of digital elevation models 
(SRTM and DDM-10; Kovács et al., 2014). The very gentle morphological trends within the fluvial sediments of the Rába river shown by the terrain aspect attribute of 
the DEM correlate well with underlying folds interpreted on the seismic dataset. 
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For the eastern boundary of the Dráva domain an alternative struc
tural model is proposed (reflected by the pre-Pannonian fault pattern, 
see main map at https://doi.org/10.17632/dnjt9cmj87.1), where we 
favor a prominent, NW–SE striking fault separating the Dráva and the 
Central Hungary domains between the Kapos fault zone and Hungarian- 
Croatian border. This interpretation is based on Bouguer anomaly pat
terns and only on limited number of seismic surveys. However, it was 
necessitated, because available data do not support the direct structural 
continuation of the Mecsekalja and other parallel fault zones of the 
Central Hungary domain (see also Section 6.4.) into the Dráva domain as 
it was indicated in former models (c.f., Fig. 15). In our view this fault 
represents the northern limit of the “Dinaric” type structural orienta
tions being also dominant in Croatia, although this area is considered as 
part of the Tisza megaunit (Schmid et al., 2008; Haas et al., 2010). 

6.4. Central Hungary 

This domain comprises the central portion of the country including 
southeastern Transdanubia and large part of the Great Hungarian Plain 

(Figs. 1, 8). Apart from the area of the Mecsek and Villány Mts. and their 
surroundings good seismic coverage (including many 3D seismic vol
umes in the east) exists in this area (Fig. 3). 

The overall neotectonic deformation pattern is dominated by 
ENE–WSW and NE–SW trending faults/fault zones and associated fault- 
related, rarely en-echelon folds, whereas structures of other orientations 
occur less frequently. Despite the generally dominant ENE–WSW and 
NE–SW structural trends notable differences exist in the neotectonic 
deformation pattern within this large domain allowing the separation of 
several distinct subareas. These include (i) the redefined Mid-Hungarian 
mobile belt south of the Balaton-Tóalmás fault zone (ii) the southern 
Danube-Tisza interfluve and (iii) the Eastern Great Hungarian Plain. The 
whole Central Hungary domain displays a significantly more complex 
neotectonic deformation pattern than shown by former neotectonic 
syntheses (Fig. 17a-b). 

6.4.1. Mid-Hungarian mobile belt (redefined after Detzky Lőrinc et al., 
2002) 

The northern part of the Central Hungary domain consists of an 

Fig. 13. Detailed view of the Zala basin folds compared to earlier regional studies (yellow: Horváth et al., 2006; white: Horváth et al., 2009; for detailed legend see 
Fig. 9). Location of Figs. 7 and 14 is shown by blue line. Seismicity is shown after Tóth et al. (2020). 
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approx. 60–80 km wide belt of distributed strike-slip deformation that 
can be followed more than 200 km along strike (Fig. 17a). The eastern 
part of this wide zone located between the ENE–WSW striking Balaton- 
Tóalmás fault in the north and the eastern Kapos fault in the south was 
previously recognized and called as Mid-Hungarian mobile belt (Detzky 
Lőrinc et al., 2002; Juhász et al., 2013). In the pre-Tertiary basement it 
incorporates the entire Mid-Transdanubian unit (i.e., the classical area 
of the Mid-Hungarian Fault Zone; Csontos and Nagymarosy, 1998) and 
the northern portion (i.e., the Mecsek unit) of the Tisza-Dacia megaunit 
(see Fig. 8). Considering the new mapping as well as most recent neo
tectonic models (Horváth et al., 2019) we extend this deformation belt 
towards the southwest up to the town of Szigetvár. The southwestern 
extension contains the Bonyhád fault zone joining to the Northern 
Imbricate Zone of the Mecsek Mts., the Bakóca and Hetvehely-Mag
yarszék faults, and the Mecsekalja fault zone (Fig. 17a). These tectonic 
elements seem to accommodate most of the young deformations (e.g., 
Tari, 1992; Horváth et al., 1997, 2019; Csontos et al., 2002; Wórum and 
Hámori, 2004; Konrád and Sebe, 2010; Kovács et al., 2018) southwest of 
the river Danube, whereas only minor, westward diminishing neo
tectonic faulting appears along the western Kapos fault (Horváth et al., 

2019). The same holds true for the Balaton-Tóalmás fault zone west of 
the town Marcali, where folding dominates the neotectonic deformation 
instead of near surface faulting (see Section 6.2.). 

Towards the East intensive near surface neotectonic faulting along 
the Mid-Hungarian mobile belt seems to diminish near the towns 
Jászberény and Szolnok (Fig. 17a). Hence, our study does not verify the 
presence of regional-scale neotectonic strike-slip shear zones crosscut
ting the entire territory of Hungary (c.f., Horváth et al., 2009). Although 
near-surface neotectonic faulting is not continuous, our detailed map
ping suggests that the northernmost root zone of the Balaton-Tóalmás 
fault zone (i.e., the Tápió-Tóalmás fault; Ruszkiczay-Rüdiger et al., 
2007) towards the east is connected to the ENE–WSW striking boundary 
fault system of the Vatta-Maklár trough showing prominent neotectonic 
reactivation. East of the Vatta-Maklár trough the continuation is un
certain due to lack of seismic data, its correlation with the neotectoni
cally active Hernád fault towards the northeast is highly model-driven 
and was primarily based on gravity data. 

Although poorly constrained below the thick Miocene volcanites we 
share the view of Fülöp and Dank (1987) that the prominent, well- 
expressed fault zone between Dabas and Albertirsa continues towards 

Fig. 14. Compressional folding related to graben inversion: the Budafa anticline. For location see Fig. 13.  
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the northeast into the Nyírség area (through the localities of Polgár and 
Tiszavasvári; see also main map at https://doi.org/10.17632/dnjt9cmj 
87.1). This interpretation is in line with tectonic restorations connect
ing the Bogdan-Voda Dragos-Voda fault system of the Eastern Carpa
thians (Fig. 1) to the Mid-Hungarian Fault Zone (Györfi et al., 1999; 
Tischler et al., 2007). The Nyírség area (underlain mostly by Miocene 
volcanics) was a former neotectonic “white patch” of the country. Our 
new mapping revealed here a predominate ENE–WSW and (N)NE–(S) 
SW oriented neotectonic fault pattern, similarly to the western parts of 
the Central Hungary domain. 

Our study has managed to reveal not only the internal fine structure, 
but also the regional structural relationships of the Mid-Hungarian 
mobile belt in such details that were not seen before. As well-reflected 
also on the background Bouguer anomaly image of the new map the 
Mid-Hungarian mobile belt is made up of a system of NE–SW and 
ENE–WSW oriented, elongated morphological elements (e.g., small ba
sins at Adony, Örkény and Bonyhád for example, and a set of en-echelon 
oriented narrow highs between the municipality of Pincehely and 
Lajosmizse). These morphological units are bounded by faults (e.g., the 
Paks-Szabadszállás, Kalocsa-Szabadszállás-Lajosmizse, Kecskemét- 

Nagykőrös-Abony and the fault system in the Tiszakécske-Szolnok area), 
which all connect to the Kapos fault (and less clearly to the Mid- 
Hungarian fault zone in the north). These elements are all character
ized by pronounced neotectonic activity represented by a complex sys
tem of individual en-echelon faults in the young sedimentary section. 
The internal structure of these fault zones generally show typical flower 
structures on the seismic profiles recording strike-slip tectonics along 
them (Fig. 18) being in agreement with previous results obtained for the 
various elements of the Mid-Hungarian mobile belt (Pogácsás et al., 
1989; Detzky Lőrinc, 1997; Tóth and Horváth, 1997; Csontos and 
Nagymarosy, 1998; Detzky Lőrinc et al., 2002; Tóth, 2003; Csontos 
et al., 2005; Fodor et al., 2005a; b; Ruszkiczay-Rüdiger et al., 2007; Bada 
et al., 2010; Palotai and Csontos, 2010; Várkonyi, 2012; Várkonyi et al., 
2013; Juhász et al., 2013; Visnovitz et al., 2015; Horváth et al., 2019). 

The fine internal structure of these fault zones, together with the 
overall alignment and geometry of the morphological elements 
mentioned above suggests a general left-lateral shear between the Kapos 
and Balaton-Tóalmás faults both during the Middle Miocene and the 
neotectonic deformation phase. This large scale shearing and deforma
tion is manifested both on a local (individual (N)NE–(S)SW oriented, en- 

Fig. 15. Detailed view of the mapped structures in the Dráva basin compared to earlier regional studies (yellow: Horváth et al., 2006; white: Horváth et al., 2009; for 
detailed legend see Fig. 9). Location of Fig. 16 is shown by blue line. Seismicity is shown after Tóth et al. (2020). 
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Fig. 16. NE–SW oriented seismic profile showing neotectonic reactivation of the border faults of a Late Carboniferous molasse graben. Note also the folding of the 
graben fill (marker horizons by dotted lines) due to Late Variscan and/or Eoalpine (Cretaceous) compressional event(s). For location see Fig. 15. 
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echelon Riedel or oblique-slip faults) and on the meso-scale (en-eche
lon/shear duplex geometry of the larger morphological elements — pull 
apart basins and horsts — within this mega-shear). Based purely on 
neotectonic fault pattern analysis, the largest fault offsets are occurring 
along the boundary of this shear zone (NE of the municipality of Gyömrő 
along the Tóalmás fault and north of Kalocsa along the Kapos fault), 
where the individual neotectonic Riedel faults were crosscut/replaced 
by subsequently developed Y-faults creating 20–25 km long continuous 
fault segments above the PDZ-s. 

Neotectonic fault reactivation occurring along the complex, inter
connected network of ENE–WSW and NE–SW striking faults are 
bounding transtensional/transpressional fault domains and strike-slip 
duplexes (see also Fodor, 2010). Neotectonic transtensional/ 

transpressional fault reactivation seems to be basically the function of 
structural orientation indicating a consistent, ~NNE–SSW oriented 
maximum horizontal stress direction during the neotectonic phase: 
transtension is namely connected to ~NE–SW striking fault segments 
(see e.g., Horváth et al., 2019), whereas transpression appears along 
~E–W (Mecsekalja fault zone near Szentlőrinc, Northern Imbricate Zone 
of the Mecsek Mts (Tari, 1992)), or WNW–ESE (Palotai and Csontos, 
2010) oriented fault segments. As suggested by the identified overall 
neotectonic fault pattern, transpressional reactivation rather occurred 
only at certain segments of the ENE–WSW striking Tóalmás fault zone 
than along the entire fault (Ruszkiczay-Rüdiger et al., 2007; Palotai and 
Csontos, 2010). 

The predominant ENE–WSW and NE–SW structural trends of the belt 

Fig. 17. Detailed view of the mapped structures in the western (a) and eastern (b) Central Hungary domain, and their comparison to earlier regional studies (yellow: 
Horváth et al., 2006; white: Horváth et al., 2009; for detailed legend see Fig. 9). Shaded gray polygon indicates the area of the Mid-Hungarian mobile belt redefined 
in this study. Locations of Figs. 5, 6, 11, 18 and 19 are shown by blue lines. Seismicity is shown after Tóth et al. (2020). 
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are explicitly reflected both in gravity data and the basement structure 
(Fülöp and Dank, 1987; Haas et al., 2010). Their origin was related 
essentially to the Early Miocene juxtaposition of the Alcapa and Tisza- 
Dacia megaunits (see also Section 2. and Fig. 1) by large-scale hori
zontal movements along the Mid-Hungarian Fault Zone. However, the 
observed neotectonic fault pattern indicates that the easily reactivating 
weakness zones of the crust only partly coincide with the presently 
known tectonic boundaries of major pre-Tertiary units (Fig. 8), and even 
if this relationship exists in certain segments it can rapidly change along 
strike. 

6.4.2. Southern Danube-Tisza interfluve 
Neotectonic deformation in this area has resulted in a more complex 

fault pattern than in the adjacent Mid-Hungarian mobile belt, since 
previously not considered NNW–SSE and N–S oriented fault systems also 
appear (Fig. 17a) beside the prevailing ENE–WSW and (N)NE–(S)SW 
structural trends. NNW–SSE and N–S striking neotectonic faults occur 
mostly at the margins of shallow seated basement blocks (Miske, 
Sükösd-Rém and Jánoshalma basement highs) in the northern part of the 
area that form the direct eastern continuation of the outcropping Mecsek 
and shallow subsurface Villány (i.e., the Máriakéménd zone) nappes of 
the Tisza-Dacia megaunit. The underlying faults were probably formed 
during Miocene extension similarly to the major, NW–SE striking synrift 
faults in the adjacent Southeast Hungary domain (see Section 6.5.). The 
small, elongated basin bounded by such NNW–SSE to N–S striking faults 
at the town of Baja (Fig. 17a) gives a typical example. Identified 

Fig. 17. (continued). 
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NNW–SSE striking roots display a significantly more complex geometry 
in the pre-Cenozoic basement than shown previously (Haas et al., 2010). 

The most prominent neotectonic element of this area is the 
ENE–WSW striking Bácsszentgyörgy-Tompa fault zone (Pogácsás et al., 
1989; referred as Tompa fault on Fig. 17a) separating the elongated 
Tompa-Madaras basement high and the Bácsalmás basin. Characteristic 
Riedel fault pattern indicates sinistral kinematics along this major fault 
(Fig. 17a). Its root zone is represented by a steeply, NNW-dipping 
Miocene border fault running roughly parallel to the inferred nearby 
Cretaceous nappe contact of the Villány and Békés-Codru units (Haas 
et al., 2010; Fig. 8) suggesting a possible, but in details not studied 
connection between the two. 

The sigmoid shape of the Bácsalmás depression, as well as the ge
ometry of the bounding ENE–WSW and (N)NE–(S)SW striking fault 
system argues for its pull-apart origin during Miocene tension/trans
tension in a left-lateral strike-slip shear zone. Moreover, this basin is 
divided into two smaller, elongated subbasins by a NNE–SSW oriented 
narrow ridge as shown both by the Bouguer residual anomaly map and 
the seismic sections. Most of the bounding faults, including the fault 
underlying the mentioned narrow ridge, were — at least partly — 
reactivated during the neotectonic phase. The map view arrangement of 
the individual (N)NE–(S)SW striking fault branches joining to the major 
ENE–WSW striking fault zone suggest sinistral kinematics, similarly to 
the observed Riedel fault pattern further to the east. Although at a much 
smaller scale, but the overall alignment of the deformation pattern in 
this area is similar to the shearing within the Mid-Hungarian mobile belt 
discussed above, where the sinistral deformation occurs along a wide 
zone and is reflected both in the local and in the meso-scale tectonic 
features. 

6.4.3. Eastern Great Hungarian Plain 
The neotectonic deformation pattern in the eastern part of the Great 

Hungarian Plain is similar, yet very different from that of the other parts 
of the Central Hungary domain. In general ENE–WSW and NE–SW 
striking faults dominate here as well, but NNW–SSE, N–S and locally 
E–W oriented fault systems and associated fault-related folds also occur 
(Fig. 17b). These structural trends seem to appear in smaller, spatially 
separated areas creating for a first glance a “diffuse”, patchy network of 
variably oriented faults/fault systems without any well-defined regional 
trend. Although deep-seated structural connection seems to exist (see 
pre-Pannonian fault pattern), the neotectonic near-surface deformation 
in this area cannot be considered as the eastern continuation of the 
deformation zone in the Mid-Hungarian mobile belt, which appears to 
diminish near Törökszentmiklós. 

NNW–SSE, N–S and subordinate E–W striking neotectonic faults 
occur mainly in the northern part of the area. The roots of these faults 
north of the city Debrecen bound small (half)grabens and horsts in the 
pre-Pannonian basement that were most probably formed during E(SE)– 
W(NW) directed Middle Miocene tension (e.g. Fodor et al., 1999). Such 
structures were also identified further to the southwest (near the towns 
of Hajdúszoboszló, Püspökladány and Kunhegyes). 

South of this area the ENE–WSW oriented, well-documented Der
ecske fault zone forms the most prominent neotectonic element (Fig. 19) 
between the Hungarian/Romanian national border and the Biharnagy
bajom basement high (Fig. 17b). 

The Érmellék earthquake with estimated magnitude of 6.2 in 1834 
was directly related to its eastern continuation in Romania associated 
with faults reaching even the surface. The fault zone runs along the 
northern margin of the Derecske trough and is characterized by a typical 
Riedel fault array indicating sinistral shearing (Fig. 19) as also indicated 
by several tectono-sedimentological and modelling studies 

Fig. 18. Neotectonic strike-slip faulting in the Bonyhád basin associated with typical flower structures. For location see Fig. 17a.  
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(Lemberkovics et al., 2005; Windhoffer and Bada, 2005; Windhoffer 
et al., 2005). Interestingly, Riedel fault array changes to anastomosing, 
subparallel network of faults with rare Riedel elements above the 
Biharnagybajom high, which (as confirmed by seismic data) forms the 
direct western continuation of the Derecske fault zone. 

Correlation of its pre-Pannonian roots towards the southwest and 
west indicates a structural connection with the NE–SW oriented 
Dévaványa-Gyomaendrőd and possibly also with the Túrkeve and 
Mezőtúr basement highs. Near surface faulting appears all above(/near) 
these basement highs, showing dominantly an anastomosing fault 
pattern. 

Balázs et al. (2018) recently proposed the compaction origin of the 
faults above the Dévaványa and Túrkeve highs based on various criteria. 
Without doubt typical Riedel fault pattern and significant lateral offset 
are missing above the mentioned highs, instead, a network of anasto
mosing, subparallel faults appear forming characteristic flower struc
tures in a cross section (Balázs et al., 2018). Similar neotectonic fault 
pattern, however, exists elsewhere in the broader area (near the town of 
Paks (Horváth et al., 2019), Biharnagybajom, SW of Komádi), where the 
tectonic origin is unquestionable. Among these the Biharnagybajom 
high represents the direct western continuation of the Derecske fault 
zone without any interruption in neotectonic activity. Therefore, the 
change in the fault segment geometry from typical en echelon array to 
anastomosing, subparallel pattern above this high is rather attributed to 

the strongly changing basement morphology (and/or root zone geom
etry) than to the change in faulting mechanism (i.e., from tectonic to 
compaction faulting). 

Seismic sections across fault systems of tectonic origin developed 
above basement highs generally show characteristic flower structures 
and direct rooting into underlying pre-Pannonian fault(s). Literature 
data indicate, however, that compaction faults typically form standalone 
(Misra, 2018; like those developed at the margins of the Algyő high, 
Fig. 17a), graben-like (Maillard et al., 2003), or locally, a set of uni
formly dipping or conjugate, usually rootless structures (Williams, 1987; 
Xu et al., 2015). Flower structures of compactional origin with roots in 
the basement are explicitly rare (e.g., Xu et al., 2015). 

Taking the above mentioned characteristics and different structural 
interpretations into account, we classified the localized young faults 
above these basement highs with anastomosing, subparallel fault ge
ometry as faults with uncertain/debated origin, but with a bias towards 
tectonics. Observed seismicity (Tóth et al., 2020) seems to support the 
tectonic origin of the fault systems developed above the Biharnagyba
jom, Dévaványa-Gyomaendrőd, Endrőd-Szarvas, Szeghalom, Komádi 
and Kismarja basement highs (Fig. 17b). If one accepts their tectonic 
origin the neotectonic fault pattern and the overall alignment of the 
deformation zones in Eastern Hungary resemble the elements of a wide, 
left-lateral shear zone being in agreement with the deformation style 
identified further to the west. The main participants of this large-scale 

Fig. 19. Neotectonic sinistral strike-slip faulting in the Derecske through as indicated by the characteristic Riedel fault array observed on the coherency horizon slice 
(upper left) mapped within the alluvial plain deposits. Cross sections A and B (locations shown by red lines on the coherency horizon slice) show typical negative 
flower structure. For location see Fig. 17b. 
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sigmoid shape, often fragmented shear zone includes the Derecske fault, 
the fault system above the Dévaványa-Gyomaendrőd highs as well as the 
fault zones developed along the Komádi-Biharkeresztes and Kismarja 
highs. 

6.5. Southeast Hungary 

This domain (Fig. 8) hosts the deepest depocenters (Szeged and 
Békés basins, Makó trough; Fig. 1) in the whole Pannonian Basin. It is 
largely covered by modern 3D seismic volumes providing excellent 
opportunity for the identification of neotectonic deformations (Fig. 3). 

Despite of this practically no neotectonic activity was identified, 
representing the most striking and surprising characteristic of this 
domain. Identified rare young faults (both with tectonic and atectonic 
origin) strike NW–SE at the margins of the Békés and Szeged basins (see 
main map, https://doi.org/10.17632/dnjt9cmj87.1) underlain by major 
Neogene faults (Haas et al., 2010) formed during Miocene basin for
mation (see e.g., Tari et al., 1999). The general lack of NE–SW striking 
neotectonic faults is an important difference compared to the adjacent 
Central Hungary domain (see Section 6.4.). 

The “missing” neotectonic activity is a still poorly understood feature 
of this domain, especially in comparison to the adjacent Central 
Hungary domain. On one hand, the neotectonic reactivation of the 
predominant NW–SE striking faults might have been hampered by the 
unfavorable orientation of the neotectonic stress field characterized by a 
ca. NE–SW directed maximum horizontal stress axis in this area (Bada, 
1999; Bada et al., 1999, 2007; Horváth et al., 2006). 

On the other, recent claybox modelling study of Hatem et al. (2017) 
draws the attention to the importance of the depth of basal shear, and 
the presence of preexisting faults in strike-slip fault development, fault 
complexity and the kinematic efficiency of a fault zone. Considering 
their modelling results and scaling factors an estimated 750–1800 m of 
lateral displacement is required along a deep-seated, localized PDZ (3–6 
km, similar to the Neogene thickness in SE Hungary) in the basement 
until distributed shear becomes focused and the first Riedel shears 
appear near the surface. The same amount of displacement in case of a 
shallow-seated PDZ (1.5–3 km) is more than enough to produce inter
action and propagation of Riedel shears resulting in a well-developed 
Riedel system above the PDZ (for more details see also Section 6.7.). 
In other words, it is speculated, that the thick sedimentary cover and/or 
the smaller displacement along the basal PDZ-s in SE Hungary compared 
to other parts of the country simply did not “allow” the formation of 
neotectonic faults within the Late Miocene–Pliocene sequence. The 
exact background of this phenomenon should be addressed by further 
detailed (modelling) studies. 

6.6. Zagyva trough 

The neotectonic deformation pattern in the Zagyva trough includes 
NNW–SSE oriented faults and fault-related folds in the southern part of 
the domain, but towards the North the general orientation gradually 
changes to NE–SW along the trough axis (see main map, https://doi.org/ 
10.17632/dnjt9cmj87.1). The overall neotectonic deformation pattern 
displays a pronounced contrast compared to the adjacent areas: in the 
south the bounding Balaton-Tóalmás fault (see also Section 6.4.) and the 
whole Central Hungary domain in general are characterized by pre
vailing ENE–WSW oriented structures. To the west a prominent Neogene 
NW–SE striking fault system (Haas et al., 2010) appears that developed 
during the synrift phase (Fodor et al., 1999; Fodor, 2010). Certain ele
ments of this system might have been neotectonically reactivated 
considering the results of detailed single- and multi-channel seismic 
surveys carried out on the river Danube (Oláh et al., 2014), as well as 
outcomes of surface geological studies in the nearby Buda Mts. (Fodor 
et al., 1994; Korpás et al., 2002; Palotai et al., 2012). 

In the north the Zagyva through is bounded by the ENE–WSW 
striking Hrubanovo-Diósjenő fault (referred as Diósjenő fault on Fig. 8) 

forming a first-order tectonic boundary that separates the Trans
danubian Range and Bükk units from the Veporic and Gemeric units of 
the Inner Western Carpathians (Balla, 1989; Haas et al., 2010). Despite 
the absence of post-rift strata and poor seismic coverage (Fig. 3) the 
prominent seismicity (Tóth et al., 2020) suggests the neotectonic ac
tivity of this element being in agreement with the results from the 
Slovakian part of Danube basin (Kováč et al., 2002). Although Middle 
Miocene and youger Neogene sediments are missing, available seismic 
data indicate intense faulting even within the shallowest imaged late 
Paleogene to earliest Miocene strata along this fault zone (Fig. 20). The 
age of faulting can not be determined more precisely (at least Neogene), 
however, the evidences introduced above strongly support the neo
tectonic classification of this fault. 

The “anomalous” neotectonic structural trend of the Zagyva through 
agrees with that of the underlying fault system formed basically during 
the Middle Miocene rifting phase of the Pannonian basin (e.g., Ben
kovics, 1991; Tari et al., 1992; Tari, 1994; Fodor et al., 1999; Fodor, 
2010; Soós, 2017), and is well reflected in the Bouguer anomaly map. 
Further to southwest the small Kajászó basin (Dudko, 1988; Horváth 
et al., 2004) between the river Danube and the lake Velence represents a 
structurally (Balla et al., 1987) largely analogous area north of the 
Tóalmás-Balaton fault zone characterized by similar N–S oriented neo
tectonic fault pattern and associated recent seismicity (Tóth et al., 2020; 
Fig. 17a). 

Regarding the regional structural pattern introduced above we pro
pose that the Zagyva through was formed and acted as an important 
transfer zone during the Miocene and neotectonic phases accommoda
ting extension by a complex set of normal faults (Soós, 2017) between 
the left-lateral (Fodor et al., 1999; Fodor, 2010) Tóalmás-Tápió fault in 
the south and the similarly oriented Hrubanovo-Diósjenő fault in the 
north (Fig. 21). Mapping results show significant neotectonic activity 
along this complex fault system with sinistral kinematics along the 
Tóalmás-Tápió fault (see Section 6.4.), whereas sinistral shear is also 
supposed along the Hrubanovo-Diósjenő fault based on its orientation 
and obtained stress field data for the neotectonic phase (Bada, 1999; 
Bada et al., 1999, 2007; Fodor et al., 2005a; Ruszkiczay-Rüdiger et al., 
2007). This model can explain the decreasing (and diminishing) neo
tectonic activity along the Tóalmás-Tápió fault east of the Zagyva 
trough, since deformation was more accommodated by the transfer zone 
(i.e., the Zagyva trough itself) and the Hrubanovo-Diósjenő fault in the 
north. The basic kinematic characteristics in the Zagyva trough seem to 
be largely stable during the Late Neogene that is compatible with 
determined late Middle Miocene stress field evolution characterized 
basically by ca. E–W oriented, minimum horizontal stress axis (σ3) 
(Fodor et al., 1999, 2005a; Ruszkiczay-Rüdiger et al., 2007; Fodor, 
2010). 

6.7. General kinematics 

Summarizing all observations on neotectonic fault kinematics a 
fairly consistent pattern is seen in the whole country: sinistral and 
dextral shear occurs along (E)NE–(W)SW (e.g., the Balaton-Tóalmás-, 
Balatonfő-, Kapos-, Bácsszentgyörgy-Tompa, Derecske fault zones), and 
(W)NW–(E)SE oriented (e.g., Szulok-Sellye-Cún or southeast Danube 
basin) fault zones, respectively, while ca. N–S oriented structures usu
ally exhibit normal faulting/pull apart nature and were often acted as 
transfer zones (e.g. Zagyva trough) between the various strike-slip shear 
zones (Fig. 21). 

The map scale pattern of the individual fault branches, as well as the 
overall alignment and geometry of the various fault zones and 
morphological elements within the redefined Mid-Hungarian mobile 
belt, the Danube-Tisza interfluve and Eastern Hungary (Section 6.4.) are 
all compatible with the sinistral shear sense deduced from the detailed 
fault patterns mapped within the individual shear zones. This is in 
agreement with the results of earlier studies (e.g., Pogácsás et al., 1989; 
Detzky Lőrinc et al., 2002; Horváth et al., 2006, 2009; Fodor et al., 
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2005a-b; Bada et al., 2006, 2007; Ruszkiczay-Rüdiger et al., 2007). 
Considering also the E–W trending neotectonic compression-related 
folds in the west (i.e., the Zala domain; see Section 6.2.) and similarly 
oriented transpression/compression-related reverse faults/imbricated 
structures in the south (i.e., at the northern and southern margins of the 
Mecsek Mts.; see e.g., Wein, 1961; Hámor, 1966; Wéber, 1977; Némedi 
Varga, 1983; Tari, 1992; Csontos et al., 2002; Wórum and Hámori, 2004; 
Konrád and Sebe, 2010; Kovács et al., 2018) a N–S oriented and east
ward slightly rotating maximum horizontal stress axis (σ1) can be 
envisaged on a basin scale during the neotectonic phase (Fig. 21). The 
mapped deformation pattern clearly shows a dominant strike-slip stress 
regime associated with an E–W to ESE–WNW oriented horizontal min
imum stress axis (σ3) except for the westernmost part of the country, 
where a compressional stress regime associated with E–W oriented 
folding prevailed. This regional (paleo)stress pattern, inferred from the 
mapped fault pattern directly related to the stress field during neo
tectonic fault genesis, explains well the observed neotectonic features 
and, in basic tendencies, shows similarities with the recent stress field 
orientation (Bada, 1999; Bada et al., 1999, 2007). One of the main dif
ferences is that a significantly smaller rotation of the maximum hori
zontal stress axis was inferred towards the northeast compared to the 
recent stress pattern, which (being parallel to it) cannot explain 
adequately the sinistral fault reactivations, for example along the Der
ecske fault zone. The deduced general stress field orientation fits basi
cally well to the reported neotectonic stress field orientations varying 
between (N)NW–(S)SE and (N)NE–(S)SW determined either for the 
entire Pannonian basin (Bada, 1999; Fodor et al., 1999; Gerner et al., 
1999), or at local scale within the basin (Bergerat and Csontos, 1988; 
Pogácsás et al., 1989; Tari, 1992; Csontos and Bergerat, 1993; Detzky 
Lőrinc, 1997; Tomljenović and Csontos, 2001; Detzky Lőrinc et al., 
2002; Fodor et al., 2002, 2008; Márton et al., 2002; Csontos et al., 2002, 
2005; Konrád and Sebe, 2010; Skorday, 2010; Bodor, 2011; Várkonyi, 
2012; Várkonyi et al., 2013; Visnovitz et al., 2015; Petrik, 2016; Kovács 
et al., 2018; Beke et al., 2019; Budai et al., 2019; Héja, 2019). 

There are only few efforts published in the past estimating the 
magnitude of displacement occurred along the various neotectonic 
strike-slip fault zones in the country. Early estimations using 2D seismic 
data provided a sinistral offset of approximately 5–10 km along various 
segments (Kiskőrös, Szolnok) of the Kapos fault zone for the Late Mio
cene–Quaternary interval (Pogácsás et al., 1989; Detzky Lőrinc, 1997). 
Along the Derecske fault zone a total sinistral offset of 4.5–6 km was 
estimated based on a sequence stratigraphic approach (Lemberkovics 
et al., 2005), whereas a typical offset range of several hundreds of meters 
was inferred for the individual fault segments. Horizontal displacement 
along the Balatonfő fault (below Lake Balaton) amounts several hun
dreds of meters based on the analysis of ultra-high resolution water 
seismic data (Visnovitz et al., 2015). Using former results deriving from 
3D seismic data (Várkonyi et al., 2013) the left-lateral horizontal offset 
in the Late Miocene–Pliocene strata was estimated about 1.0–1.5 km 
along the 3–4 km wide Balaton fault zone in the Buzsák area (Visnovitz 
et al., 2015). 

The drawback of these estimations that they are usually based on 
correlation of various linear elements identified within the Late Mio
cene–Pliocene sequence thought to be interconnected originally on the 
opposite sides of a fault zone. On one hand this method is highly un
certain in our opinion, and on the other it does not take into account that 
significant displacement needs to occur along a deep-seated PDZ until 
the first shear deformations (i.e., Riedel shears) appear near the surface 
(i.e., Hatem et al., 2017). Following the strike-slip faulting stage clas
sification used by Hatem et al. (2017) and Crider and Peacock (2004) 
majority of the strike-slip deformation developed in Hungary reached 
Stages I and II only (development of en-echelon faults, and their sub
sequent interaction and propagation). The best, textbook examples of 
these stages of deformation are represented by the Derecske, Sellye and 
Balaton fault systems. Stage III deformation (slip along a through-going 
fault) in our view occurred only along the Tóalmás fault near the mu
nicipality of Gyömrő, along the Kapos-east fault North of Kalocsa and 
perhaps along the Bácsszentgyörgy-Tompa fault near Tompa, based 

Fig. 20. Seismic profile crossing the Hrubanovo-Diósjenő fault zone displacing Paleogene–Earliest Miocene strata. For location see inset map at lower left, legend 
given in Fig. 9. 
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purely on analysis of the nearsurface neotectonic fault pattern. 
An effort was made to estimate possible displacement along typical 

neotectonic faults in Hungary using the modelling results and scaling 
factors of Hatem et al. (2017). Using wet kaolin claybox models cali
brated and scaled to the strength and lenght of the crust (10 mm in the 
claybox is equivalent to 500–1200 m of continental crust) these authors 
investigated the relationship between the amount of displacement along 
PDZ-s buried at various depths and the style as well as the evolution of 
near surface faulting above the PDZ. It was determined how much cu
mulative slip along the buried PDZ was required in order to develop the 
characteristic fault patterns of the well-distinguished deformation stages 
(0-III) at the surface. Considering a typical PDZ depth of 1.5–3 km in the 
Pannonian basin (corresponding to the ULS model of Hatem et al., 2017) 
a 1000–2500 m and 1200–3000 m of displacement is required along the 
PDZ in the basement to develop a Stage II Riedel system seen along the 
eastern Derecske fault and a Stage III deformation seen along the 
Tóalmás fault, respectively (20 and 25 mm of displacement in Fig. 5a of 
Hatem et al., 2017). It needs to be emphasized, that these estimations 
are referring to displacement along the PDZ in the basement and not 
along fault planes developed in the Late Miocene–Pliocene sequence, 
indicating that displacement estimation methods using Late Miocene–
Pliocene features significantly overestimate the real displacement. 

In summary, we think that neotectonic displacement magnitudes 
along the major fault zones are probably less than previously anticipated 
and are in the order of maximum 2–3 km along their PDZ-s, even along 
the most prominent neotectonic shear zones during the neotectonic 
phase. Comparing to recent active strike-slip zones in the world the 
neotectonic deformation phase in Hungary can be considered as a rather 
weak tectonic event caused primarily by the continuous northward 
indentation of the Adriatic microplate (“Adria-push”; Bada et al., 2007) 
affecting a completely landlocked basin. 

7. Conclusions 

1. The new map of young geological deformations in Hungary pre
sented in this paper provides a detailed and significantly more accurate 
definition (actual position, extension and geometry) of young de
formations compared to previous studies. Based on nearly 2900 2D 
seismic profiles and 70 3D seismic volumes, as well as the results of 
former regional neotectonic syntheses and many local studies, the new 
map includes all important deformation structures (faults and folds, 
both tectonic and atectonic) related to the neotectonic evolutionary 
phase of the Pannonian basin, except for large-wavelength, drape-over 
folds formed due to the differential compaction of the young sedimen
tary pile. Beside near surface structures the new map also displays the 
pre-Pannonian root zones of the neotectonic faults, aiding the better 
understanding of the geometric and genetic relationships between the 
shallow and deep-seated structures. 

2. The new map allowed the identification of several neotectonic 
domains with markedly different deformation patterns. In all domains 
the neotectonic fault pattern clearly reflects the control of identically 
oriented pre-Pannonian (mostly synrift) fault systems during the neo
tectonic phase. Markedly different orientations of neotectonic structures 
indicate important differences in the overall orientation of the under
lying tectonic fabric. These observations clearly demonstrate that neo
tectonic activity is predominantly due to the reactivation of pre-existing 
structures all over the Pannonian basin, as also indicated by previous 
studies. 

3. Despite experiencing the largest Middle- to Late Miocene exten
sion and the formation of the deepest depocenters in the whole Pan
nonian basin, SE Hungary practically lacks any observable neotectonic 
activity, which is a striking, but still poorly understood feature. Unfa
vorable fault orientations or the combination of thick sedimentary cover 

Fig. 21. Kinematic interpretation of the mapped tectonic deformations. For the legend of the mapped structures see Fig. 9.  
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and insufficient displacements along the major PDZ-s are speculated 
behind this phenomena. 

4. Fault segment geometries in neotectonic fault zones indicates a 
consistent regional displacement pattern: sinistral shear along (E)NE– 
(W)SW oriented, and dextral shear along (W)NW–(E)SE oriented fault 
zones, respectively. These observations — together with the E–W 
trending contractional/transpressional structures (folds, reverse faults, 
imbricates) occurring locally in western and southern Hungary — 
indicate a dominantly strike-slip stress regime with a laterally slightly 
rotating (from N–S to NNE–SSW) maximum horizontal stress axis (σ1) 
during the neotectonic phase. 

5. Regarding its magnitude, the neotectonic phase within Pannonian 
Basin can be considered as a weak tectonic event compared to active 
tectonic movements related to plate boundaries. Maximum 2–3 km of 
lateral displacement is envisaged along the PDZ-s of major neotectonic 
faults zones in the basin, which is less than that estimated by other 
authors based mainly on the correlation of geological features on the 
opposite sides of the deformation zones. 
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Csontos, L., Magyari, Á., Van Vliet-Lanoe, B., Musitz, B., 2005. Neotectonics of the 
Somogy Hills (Part II): evidence from seismic sections. Tectonophysics 410, 63–80. 
https://doi.org/10.1016/j.tecto.2005.05.049. 

B. Koroknai et al.                                                                                                                                                                                                                               

https://doi.org/10.17632/dnjt9cmj87.1
https://doi.org/10.17632/dnjt9cmj87.1
http://www.geomega.hu
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0005
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0005
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0005
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0005
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0010
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0010
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0015
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0015
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0015
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0015
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0020
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0020
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0020
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0020
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0020
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0020
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0025
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0025
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0025
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0030
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0030
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0030
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0030
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0030
https://doi.org/10.1002/2015TC004109
https://doi.org/10.1002/2015TC004109
https://doi.org/10.1016/j.gloplacha.2017.10.012
https://doi.org/10.1016/j.gloplacha.2017.10.012
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0045
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0045
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0050
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0050
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0055
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0055
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0060
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0060
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0060
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0060
https://doi.org/10.1016/j.marpetgeo.2019.04.006
https://doi.org/10.1016/j.marpetgeo.2019.04.006
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf3080
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf3080
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf3080
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf3080
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf3080
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0080
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0080
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0080
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0085
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0085
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0085
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf3040
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf3040
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf3040
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0095
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0095
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0100
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0100
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0100
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0100
https://doi.org/10.1007/s00531-019-01745-3
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0110
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0110
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0115
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0115
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0120
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0120
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0120
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0120
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0125
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0125
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0125
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0130
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0130
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0135
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0135
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0135
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0140
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0140
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0145
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0145
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0150
http://refhub.elsevier.com/S0012-8252(20)30457-8/rf0150
https://doi.org/10.1016/S0040-1951(02)00363-3
https://doi.org/10.1016/j.tecto.2005.05.049


Earth-Science Reviews 211 (2020) 103411

28
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(Determination of stress-field history on the basis of multiphase tectonism identified 
in the seismic profiles, in the western part of the Szolnok flysch belt). Magyar 
Geofizika 37, 228–246 (in Hungarian with English abstract).  
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207–218. 

Dudko, A., 1997. Neogene tectonics of the Mezőföld. Annual Report of the Geological 
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Héja, G., 2019. In: Mesozoic deformations of the western part of the Transdanubian 
Range. Unpublished PhD Thesis, Dept. Physical and Applied Geology. Eötvös 
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Horváth, F., Cloetingh, S., 1996. Stress-induced late-stage subsidence anomalies in the 
Pannonian basin. Tectonophysics 266, 287–300. 
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Velence Hills and the Balatonfő. In: Explanatory Book of the Geological Map of the 
Velence Hills (1:25 000) and the Geological Map of Pre-Sarmatian Surface of the 
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karszt- és szerkezetfejlődése (Geology, karst system and structural evolution of the 
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kifejlesztésében (Towards a high-resolution chronostratigraphy and geochronology 
for the Pannonian Stage: Significance of the Paks cores (Central Pannonian Basin)), 
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Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian 
area. Geol. Carpath. 57, 511–530. 

Petrik, A.B., 2016. In: Structural evolution of the southern Bükk foreland. Unpublished 
PhD thesis, Dept. of Physcial and Applied Geology (in Hungarian with English 
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(Eds.), Geological Society London Special Publications, 156, pp. 215–250. 

ter Borgh, M., Vasiliev, I., Stoica, M., Knezevic, S., Matenco, L., Krijgsman, W., 
Rundic, Lj, Cloetingh, S., 2013. The isolation of the Pannonian basin (Central 

Paratethys): new constraints from magnetostratigraphy and biostratigraphy. Glob. 
Planet. Chang. 103, 99–118. https://doi.org/10.1016/j.gloplacha.2012.10.001. 

Tischler, M., Gröger, H.R., Fügenschuh, B., Schmid, S.M., 2007. Miocene tectonics of the 
Maramures area (Northern Romania): implications for the Mid-Hungarian fault 
zone. Int. J. Earth Sci. 96, 473–496. 
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